

CERTIFICATE OF ANALYSIS

You know that the sample you collected after

snowshoeing to site, digging 5 meters, and

racing to get it on a plane so you can submit it

to the lab for time sensitive results needed to

make important and expensive

(whew) is VERY important. We know that too.

REPORTED TO First Nations Health Authority (Interior)

Suite 770 175 2nd Avenue Kamloops. BC V2C 5W1

ATTENTION Patti Joyce WORK ORDER 22D1734

PO NUMBER 0000002803 RECEIVED / TEMP 2022-04-13 11:45 / 6°C

PROJECTSugar Cane Williams Lake CWSREPORTED2022-04-29 11:07PROJECT INFOCOC NUMBERNo #

Introduction:

CARO Analytical Services is a testing laboratory full of smart, engaged scientists driven to make the world a safer and healthier place. Through our clients' projects we become an essential element for a better world. We employ methods conducted in accordance with recognized professional standards using accepted testing methodologies and quality control efforts. CARO is accredited by the Canadian Association for Laboratories Accreditation (CALA) to ISO/IEC 17025:2017 for specific tests listed in the scope of accreditation approved by CALA.

Big Picture Sidekicks

We've Got Chemistry

It's simple. We figure the more you enjoy working with our fun and engaged team members; the more likely you are to give us continued opportunities to support you.

Ahead of the Curve

Through research, regulation knowledge, and instrumentation, we are your analytical centre for the technical knowledge you need, BEFORE you need it, so you can stay up to date and in the know.

If you have any questions or concerns, please contact me at sgulenchyn@caro.ca

decisions

Authorized By:

Sara Gulenchyn, B.Sc, P.Chem. Client Services Manager Sara Gulenchyn

TEST RESULTS

REPORTED TO First Nations Health Authority (Interior)
PROJECT Sugar Cane Williams Lake CWS

WORK ORDER REPORTED 22D1734 2022-04-29 11:07

Analyte	Result	Guideline	Guideline 2	RL Units	Analyzed	Qualifie
WLFN Health Centre 477-15976 (22D1734-01) Matrix:	Water Sampled	: 2022-04-12 13:	50		
Calculated Parameters						
Hardness, Total (as CaCO3)	208	None Required		0.500mg/L	N/A	
otal Metals						
Aluminum, total	< 0.0050	OG < 0.1		0.0050mg/L	2022-04-28	
Antimony, total	< 0.00020	MAC = 0.006		0.00020mg/L	2022-04-28	
Arsenic, total	0.00649	MAC = 0.01		0.00050mg/L	2022-04-28	
Barium, total	< 0.0050	MAC = 2		0.0050mg/L	2022-04-28	
Beryllium, total	< 0.00010	N/A		0.00010mg/L	2022-04-28	
Bismuth, total	< 0.00010	N/A		0.00010mg/L	2022-04-28	
Boron, total	0.292	MAC = 5		0.0500mg/L	2022-04-28	
Cadmium, total	< 0.000010	MAC = 0.005		0.000010mg/L	2022-04-28	
Calcium, total	31.2	None Required		0.20mg/L	2022-04-28	
Chromium, total	0.00072	MAC = 0.05		0.00050mg/L	2022-04-28	
Cobalt, total	< 0.00010	N/A		0.00010mg/L	2022-04-28	
Copper, total	0.0326	MAC = 2	AO <= 1	0.00040mg/L	2022-04-28	
Iron, total	< 0.010	AO ≤ 0.3		0.010mg/L	2022-04-28	
Lead, total	0.00059	MAC = 0.005		0.00020mg/L	2022-04-28	
Lithium, total	0.00166	N/A		0.00010mg/L	2022-04-28	
Magnesium, total	31.5	None Required		0.010mg/L	2022-04-28	
Manganese, total	< 0.00020	MAC = 0.12	AO <= 0.02	0.00020mg/L	2022-04-28	
Molybdenum, total	0.0243	N/A		0.00010mg/L	2022-04-28	
Nickel, total	0.00119	N/A		0.00040mg/L	2022-04-28	
Phosphorus, total	0.239	N/A		0.050mg/L	2022-04-28	
Potassium, total	6.57	N/A		0.10mg/L	2022-04-28	
Selenium, total	< 0.00050	MAC = 0.05		0.00050mg/L	2022-04-28	
Silicon, total	12.4	N/A		1.0mg/L	2022-04-28	
Silver, total	< 0.000050	None Required		0.000050mg/L	2022-04-28	
Sodium, total	121	AO ≤ 200		0.10mg/L	2022-04-28	
Strontium, total	0.231	MAC = 7		0.0010mg/L	2022-04-28	
Sulfur, total	31.6	N/A		3.0mg/L	2022-04-28	
Tellurium, total	< 0.00050	N/A		0.00050mg/L	2022-04-28	
Thallium, total	< 0.000020	N/A		0.000020mg/L	2022-04-28	
Thorium, total	< 0.00010	N/A		0.00010mg/L	2022-04-28	
Tin, total	< 0.00004	N/A		0.00020mg/L	2022-04-28	
Titanium, total	< 0.0050	N/A		0.0050mg/L	2022-04-28	
Tungsten, total	< 0.0002	N/A		0.0010mg/L	2022-04-28	
Uranium, total	0.00403	MAC = 0.02		0.000020mg/L	2022-04-28	
Vanadium, total	< 0.0010	N/A		0.0050mg/L	2022-04-28	
Zinc, total	< 0.0040	AO ≤ 5		0.0040mg/L	2022-04-28	
Zirconium, total	< 0.00010	N/A		0.00010mg/L	2022-04-28	

APPENDIX 1: SUPPORTING INFORMATION

REPORTED TOFirst Nations Health Authority (Interior)WORK ORDER22D1734PROJECTSugar Cane Williams Lake CWSREPORTED2022-04-29 11:07

Analysis Description	Method Ref.	Technique	Accredited	Location
Hardness in Water	SM 2340 B* (2017)	Calculation: 2.497 [total Ca] + 4.118 [total Mg] (Est)	✓	N/A
Total Metals in Water	EPA 200.2 / EPA 6020B	HNO3+HCl Hot Block Digestion / Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS)	✓	Richmond

Note: An asterisk in the Method Reference indicates that the CARO method has been modified from the reference method

Glossary of Terms:

RL Reporting Limit (default)

Less than the specified Reporting Limit (RL) - the actual RL may be higher than the default RL due to various factors

AO Aesthetic Objective

MAC Maximum Acceptable Concentration (health based)

mg/L Milligrams per litre

OG Operational Guideline (treated water)

EPA United States Environmental Protection Agency Test Methods

SM Standard Methods for the Examination of Water and Wastewater, American Public Health Association

Guidelines Referenced in this Report:

Guidelines for Canadian Drinking Water Quality (Health Canada, June 2019)

Note: In some cases, the values displayed on the report represent the lowest guideline and are to be verified by the end user

General Comments:

The results in this report apply to the samples analyzed in accordance with the Chain of Custody document. This analytical report must be reproduced in its entirety. CARO is not responsible for any loss or damage resulting directly or indirectly from error or omission in the conduct of testing. Liability is limited to the cost of analysis. Samples will be disposed of 30 days after the test report has been issued or once samples expire, whichever comes first. Longer hold is possible if agreed to in writing.

Results in **Bold** indicate values that are above CARO's method reporting limits. Any results that are above regulatory limits are highlighted red. Please note that results will only be highlighted red if the regulatory limits are included on the CARO report. Any Bold and/or highlighted results do <u>not</u> take into account method uncertainty. If you would like method uncertainty or regulatory limits to be included on your report, please contact your Account Manager:sgulenchyn@caro.ca

Please note any regulatory guidelines applied to this report are added as a convenience to the client, at their request, to help provide some initial context to analytical results obtained. Although CARO makes every effort to ensure accuracy of the associated regulatory guideline(s) applied, the guidelines applied cannot be assumed to be correct due to a variety of factors and as such CARO Analytical Services assumes no liability or responsibility for the use of those guidelines to make any decisions. The original source of the regulation should be verified and a review of the guideline(s) should be validated as correct in order to make any decisions arising from the comparison of the analytical data obtained to the relevant regulatory guideline for one's particular circumstances. Further, CARO Analytical Services assumes no liability or responsibility for any loss attributed from the use of these guidelines in any way.

APPENDIX 2: QUALITY CONTROL RESULTS

REPORTED TO First Nations Health Authority (Interior) **PROJECT** Sugar Cane Williams Lake CWS

WORK ORDER REPORTED

22D1734 2022-04-29 11:07

The following section displays the quality control (QC) data that is associated with your sample data. Groups of samples are prepared in "batches" and analyzed in conjunction with QC samples that ensure your data is of the highest quality. Common QC types include:

- Method Blank (Blk): A blank sample that undergoes sample processing identical to that carried out for the test samples. Method blank results are used to assess contamination from the laboratory environment and reagents.
- **Duplicate (Dup)**: An additional or second portion of a randomly selected sample in the analytical run carried through the entire analytical process. Duplicates provide a measure of the analytical method's precision (reproducibility).
- Blank Spike (BS): A sample of known concentration which undergoes processing identical to that carried out for test samples, also referred to as a laboratory control sample (LCS). Blank spikes provide a measure of the analytical method's accuracy.
- Matrix Spike (MS): A second aliquot of sample is fortified with a known concentration of target analytes and carried through the entire analytical process. Matrix spikes evaluate potential matrix effects that may affect the analyte recovery.
- Reference Material (SRM): A homogenous material of similar matrix to the samples, certified for the parameter(s) listed.
 Reference Materials ensure that the analytical process is adequate to achieve acceptable recoveries of the parameter(s) tested.

Each QC type is analyzed at a 5-10% frequency, i.e. one blank/duplicate/spike for every 10-20 samples. For all types of QC, the specified recovery (% Rec) and relative percent difference (RPD) limits are derived from long-term method performance averages and/or prescribed by the reference method.

Analyte	Result	RL Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
Total Metals, Batch B2D2883									
Blank (B2D2883-BLK1)			Prepared	I: 2022-04-2	28, Analyze	d: 2022-(04-28		
Aluminum, total	< 0.0050	0.0050 mg/L							
Antimony, total	< 0.00020	0.00020 mg/L							
Arsenic, total	< 0.00050	0.00050 mg/L							
Barium, total	< 0.0050	0.0050 mg/L							
Beryllium, total	< 0.00010	0.00010 mg/L							
Bismuth, total	< 0.00010	0.00010 mg/L							
Boron, total	< 0.0500	0.0500 mg/L							
Cadmium, total	< 0.000010	0.000010 mg/L							
Calcium, total	< 0.20	0.20 mg/L							
Chromium, total	< 0.00050	0.00050 mg/L							
Cobalt, total	< 0.00010	0.00010 mg/L							
Copper, total	< 0.00040	0.00040 mg/L							
Iron, total	< 0.010	0.010 mg/L							
Lead, total	< 0.00020	0.00020 mg/L							
Lithium, total	< 0.00010	0.00010 mg/L							
Magnesium, total	< 0.010	0.010 mg/L							
Manganese, total	< 0.00020	0.00020 mg/L							
Molybdenum, total	< 0.00010	0.00010 mg/L							
Nickel, total	< 0.00040	0.00040 mg/L							
Phosphorus, total	< 0.050	0.050 mg/L							
Potassium, total	< 0.10	0.10 mg/L							
Selenium, total	< 0.00050	0.00050 mg/L							
Silicon, total	< 1.0	1.0 mg/L							
Silver, total	< 0.000050	0.000050 mg/L							
Sodium, total	< 0.10	0.10 mg/L							
Strontium, total	< 0.0010	0.0010 mg/L							
Sulfur, total	< 3.0	3.0 mg/L							
Tellurium, total	< 0.00050	0.00050 mg/L							
Thallium, total	< 0.000020	0.000020 mg/L							
Thorium, total	< 0.00010	0.00010 mg/L							
Tin, total	< 0.00004	0.00004 mg/L							
Titanium, total	< 0.0050	0.0050 mg/L							
Tungsten, total	< 0.0002	0.0002 mg/L							
Uranium, total	< 0.000020	0.000020 mg/L							
Vanadium, total	< 0.0010	0.0010 mg/L							
Zinc, total	< 0.0040	0.0040 mg/L							

APPENDIX 2: QUALITY CONTROL RESULTS

REPORTED TO First Nations Health Sugar Cane Williams		•				WORK REPOR	ORDER TED	22D ² 2022	1734 2-04-29	11:07
Analyte	Result	RL	Units	Spike Level	Source Result	% REC	REC Limit	% RPD	RPD Limit	Qualifier
Total Metals, Batch B2D2883, Continued										
Blank (B2D2883-BLK1), Continued				Prepared	: 2022-04-2	8, Analyze	ed: 2022-0)4-28		
Zirconium, total	< 0.00010	0.00010	mg/L	•		· ·				
LCS (B2D2883-BS1)				Prepared	: 2022-04-2	8, Analyze	d: 2022-0)4-28		
Aluminum, total	0.0226	0.0050	mg/L	0.0200		113	80-120			
Antimony, total	0.0197	0.00020	mg/L	0.0200		98	80-120			
Arsenic, total	0.0192	0.00050	mg/L	0.0200		96	80-120			
Barium, total	0.0194	0.0050		0.0200		97	80-120			
Beryllium, total	0.0198	0.00010		0.0200		99	80-120			
Bismuth, total	0.0186	0.00010		0.0200		93	80-120			
Boron, total Cadmium, total	< 0.0500 0.0195	0.0500 0.000010		0.0200 0.0200		112 97	80-120 80-120			
Calcium, total	1.73		mg/L	2.00		87	80-120			
Chromium, total	0.0192	0.00050		0.0200		96	80-120			
Cobalt, total	0.0192	0.00010		0.0200		96	80-120			
Copper, total	0.0189	0.00040		0.0200		95	80-120			
Iron, total	1.95	0.010		2.00		97	80-120			
Lead, total	0.0184	0.00020	mg/L	0.0200		92	80-120			
Lithium, total	0.0201	0.00010	mg/L	0.0200		100	80-120			
Magnesium, total	1.94	0.010	mg/L	2.00		97	80-120			
Manganese, total	0.0195	0.00020		0.0200		98	80-120			
Molybdenum, total	0.0192	0.00010		0.0200		96	80-120			
Nickel, total	0.0190	0.00040		0.0200		95	80-120			
Phosphorus, total	1.98	0.050		2.00		99	80-120			
Potassium, total	1.96		mg/L	2.00		98	80-120			
Selenium, total Silicon, total	0.0167 1.8	0.00050	mg/L	0.0200 2.00		92	80-120 80-120			
Silver, total	0.0193	0.000050		0.0200		97	80-120			
Sodium, total	2.16		mg/L	2.00		108	80-120			
Strontium, total	0.0189	0.0010		0.0200		94	80-120			
Sulfur, total	4.5		mg/L	5.00		90	80-120			
Tellurium, total	0.0191	0.00050	mg/L	0.0200		96	80-120			
Thallium, total	0.0187	0.000020	mg/L	0.0200		94	80-120			
Thorium, total	0.0184	0.00010	mg/L	0.0200		92	80-120			
Tin, total	0.0199	0.00004		0.0200		100	80-120			
Titanium, total	0.0193	0.0050		0.0200		96	80-120			
Tungsten, total	0.0180	0.0002		0.0200		90	80-120			
Uranium, total	0.0179	0.000020		0.0200		89	80-120			
Vanadium, total Zinc, total	0.0193 0.0191	0.0010 0.0040		0.0200 0.0200		96 96	80-120 80-120			
Ziric, total Zirconium, total	0.0191	0.0040		0.0200		100	80-120			
Reference (B2D2883-SRM1)	0.0200	0.000.0	9/ =		: 2022-04-2			14-28		
Aluminum, total	0.209	0.0050	ma/L	0.198		105	70-130			
Antimony, total	0.0234	0.00020		0.0230		102	70-130			
Arsenic, total	0.0200	0.00050		0.0200		100	70-130			
Barium, total	0.0154	0.0050	mg/L	0.0161		96	70-130			
Beryllium, total	0.00387	0.00010		0.00384		101	70-130			
Boron, total	0.186	0.0500		0.191		98	70-130			
Cadmium, total	0.00390	0.000010		0.00404		97	70-130			
Calcium, total	0.81		mg/L	0.938		87	70-130			
Chromium, total	0.0251	0.00050		0.0256		98	70-130			
Copper total	0.0213	0.00010		0.0214		100	70-130			
Copper, total Iron, total	0.0308	0.00040		0.0322 0.0580		96 102	70-130 70-130			
Lead, total	0.0059	0.00020		0.0580		93	70-130			
Lithium, total	0.00738	0.00020		0.00790		98	70-130			
Enmant, total	0.00000	0.00010	g, L	0.0102		30	10-100			

APPENDIX 2: QUALITY CONTROL RESULTS

Analyte Result Total Metals, Batch B2D2883, Continued Reference (B2D2883-SRM1), Continued	RL Uni	ts Spike Level	Source % RI Result		% RPD	RPD	
,				Limit	70 KPD	Limit	Qualifier
Reference (B2D2003-SRMT), Continued		Propored	: 2022-04-28, Ana	Juzad: 2022 (04.20		
			· · · · · · · · · · · · · · · · · · ·	'	J4-20		
	.010 mg/l		97				
Manganese, total 0.0117 0.00	0020 mg/l	L 0.0120	97	70-130			
Molybdenum, total 0.0431 0.00	0010 mg/l	L 0.0438	98	70-130			
Nickel, total 0.0375 0.00	0040 mg/l	L 0.0394	95	70-130			
Potassium, total 0.80 0	0.10 mg/l	L 0.820	98	70-130			
Selenium, total 0.0988 0.00	0050 mg/l	L 0.117	84	70-130			
Sodium, total 0.61 0	0.10 mg/l	L 0.490	125	5 70-130			
Strontium, total 0.269 0.0	0010 mg/l	L 0.276	97	70-130			
Thallium, total 0.0115 0.000	0020 mg/l	L 0.0118	98	70-130			
Uranium, total 0.00927 0.000	0020 mg/l	L 0.00970	96	70-130			
Vanadium, total 0.0273 0.0	0010 mg/l	L 0.0274	100	0 70-130			
Zinc, total 0.0812 0.0							

1-888-311-8846

AME AS REPORT TO

CARO BC COC, Rev 2017-01

COC#	PAGE / OF
RECEIVED BY:	DATE: U 1
Rok(Other)	TIME: ('(', C

	Ш	Ш	

ond, BC V6V 2K9 owna, BC V1X 5C3 onton, AB T5S 1H7 2 2 D 1 7 3 4 *

		TIME:
_	TURNAROUND TIME REQUESTED):
	Routine: (5-7 Days) 🔀	

REGULATORY APPLICATION:

Show on Report Canadian Drinking Water Quality 🗵 BC WQG 🗀 BC HWR

Other* *Contact Lab To Confirm. Surcharge May Apply

BC CSR Soil: WL AL PL RL-LD RL-HD CL IL BC CSR Water: AW | IW | LW | DW | Other:

CCME:

ANALYSES REQUESTED:

B: Cyanide C: PCBs

A: Biohazard D: Asbestos E: Heavy Metals F: Flammable

G: Strong Odour H: High Contamination I: Other (please specify*)

	ANALYTICAL SERVI Caring About Results, Obvio		I	* 2						BC V12 AB T59
REPORT T	O:			IIV	VOICE	7 3	4 *	AME	AS P	EPORT
COMPANY	: First Nations Health Authori	ty		CC	MPANY	:First N	lations H	ealth	Aut	hority
ADDRESS:	Box 4887						100 Park			
	Williams Lake, BC V2G 2V8					Vanco	uver, BC	V7T 1	A2	
CONTACT:	Patti Joyce			co	NTACT:	Bernic	e Debert			
TEL/FAX:	250-298-9136			TEL	/FAX:	250-85	51-4836			
	T: EXCEL X WATERTRAX ES	Sda	,	1	IVERY ME JIL 1:		MAIL 🔀 debert@fnl	MAIL ha.ca	П	ОТН
EMAIL 1:	Patti.Joyce@fnha.ca	ш	R* ▼	EM/	JL 2:	AP@fnh	a.ca			
EMAIL 2:	casey.neathway@fnha.ca			EM/	JL 3:					
EMAIL 3:	bernice.debert@fnha.ca			РО	#:	contra	ct #0000	0028	03	
** If you would	d like to sign up for ClientConnect and/	or E	nviroC	hain,	CARO's on	line servi	ce offerings,	, please	chec	k here:
SAMPLED E			/ATRI	v.		SAMPLI				MENTS
		WATER	/ATER		NEX C	A T.C	T18.4F	NATED O	ŒD	

		Vanco	ouver, BC	V7	T 1A	2		PI	ROJE	CTN	IUME	BER/	INF	O:
	CON	TACT: Bernic	e Deber	t					ř					
-	TEL/F	AX: 250-8	51-4836											_
ı	DELIVE	ERY METHOD: 1	MAIL 🗵	MA	AIL	C	THER*							Г
E	EMAIL	1: bernice	.debert@fr	ha.c	a							Γ		ľ
E	EMAIL	2: AP@fnh	a.ca									lor.		E SE
E	EMAIL	3:					21	Г				Non-Chlor.	4	
F	PO #:	contra	ct #0000	0002	2803		7	PHC F1				8	T HAA	HERRICIDES
12	ain, CA	RO's online servi	ce offering:	s, ple	ase cł	eck he	re: 🔀	풉		7		, ס	S	ACID
(:		SAMPLI	NG:		CC	MME	NTS:	Г	Γ	F2-F4	/HEPH	ate	Q	A
	AINER QTY	DATE	TIME	INATED	ED			T VPH	T VPH	도 H	T L/HE	LS Chlorinated	T GLYCOLS	IDES 7

EMAIL 1: Patt.logvee@fnha.ca EMAIL 2: Casey.neathwaye@fnha.ca EMAIL 3: Pott.logvee@fnha.ca EMAIL 3: Pott.logvee@fnha.ca PO #: Contract #0000002803 PF If you would like to sign up for ClientConnect and/or Envirochain, CARO's online service offerings, please check here: SX EMAIL 5: Pott.log.	MAIL 1:	Patti.Joyce@fnha.ca	ESda OTHI	t ER*	Γ	EM EM	IAIL IAIL	2: AP@fnh	.debert@fr				OTHER* J					Non-Chlor.		CIDES	Hg	Hg	inc. pH				Г	-		en & meta	etals only)	(THM & HAA)	į.				CODE(C)
SAMPLED BY: Contract Manual Contract Manu					-	PC) #•	contra	ct #000	200	2002			E		_		Non	HA	ERBI		VED	. <u>=</u>				100	[F. CO	A (G	B (m	E					APD
CONTAINUE CONTAINUE DO THE MWHEN CONTAINUE CON			nd/or I	Envi									k horo. 🔽	몱		4		Γ		=)TAL	SSOI	Î	- [Γ	- 1		age	age	age					1A7
CLIENT SAMPLE ID: ONLY METALS - WAS BESTOOS ONLY WE WE WE WAS BESTOOS ONLY WE WAS BESTO				MAT	TRI)	(:	ΔĮ	SAMPLI			C	ON		F		CF2-F	EPH	inated	COLS	- AC	ER TC	LER DI	(SAL	ALK F	_ []	_ [DAMO	CIAN	KINIS	d Pack	d Pack	d Pack					ADIF
CLIENT SAMPLE ID:			ING WATER	R WATER		.	TAINER C	DATE	TIME	RINATE	RED	LKVED	(e.g. flow/yolumo	Г	L M	L F	三	OLS Chlor	T GLY	CIDES	LS - WA	LS - WA		ר הי אַניי						Standar	Standar	Standar					RIFCAN
WEFN Harlth Centre 1 2022-0112 B:50 V V		CLIENT SAMPLE ID:	DRINK	OTHE	SOIL	OTHE	CON	YYYY-MM-DD	нн:мм	SHO	FILTE	L L		BTEX	VOC	EPH	PAH	PHEN	PCB	도 	META	META	META :			100	EF A		ASBE	FNHA	FNHA	FNHA	x 8			수	1200
		WIFN Health Centre	-				,		13:50	1	·		-					-						Ė	-	-	_	_			1	-				_	
	10	477-15976					,																	=				T							+	+	_
								*											,							+		+		\vdash	\vdash				+	+	_
																					\top									\vdash					+	+	_
												T							\top					+	+		+			\vdash	(8)			\dashv	-	+	_
							-					T								+		+	+	+	+	+		+	+					\dashv	+	+	_
		2																	+	+	+			-		+	-	+						-	+	+	_
			ē								+	t						-		+	+	+				-	+	+					\dashv	\dashv	+	+	_
											+						_	\dashv	+	+	+	-		+	+		+	-	+	\sqcup	\sqcup			\dashv	+	\perp	
				+	1	+	1					+					+	+	+				+	+	+	-			\perp				54	_		\perp	_

SHIPPING INSTRUCTIONS:
Supplies Needed:

SAMPLE RETENTION:

Return Cooler(s)

30 Days (default) 60 Days 7 90 Days 7

Other (surcharges will apply):

OTHER INSTRUCTIONS:

SAMPLE RECEIPT CONDITION: COOLER 1 (°C): 6, UICE: YIT

COOLER 2 (°C): ICE: Y COOLER 3 (°C): ICE: Y F N F

NF

CUSTODY SEALS INTACT: NA F VF N F

If you would like to talk to a real live Scientist about your project requirements, please check here: